Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(30): 35700-35708, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34292704

RESUMO

Fuel cell (FC) is an attractive green alternative for today's fuel combustion systems. In common FCs, a polymer electrolyte membrane selectively conducts protons but blocks the passage of electrons and fuel. Nafion, the current benchmark membrane material, has a superior conductivity owing to unique morphology comprising randomly oriented elongated ionic nanochannels within its Teflon-like matrix. Channel orientation enhances Nafion conductivity, yet there has been no facile method to induce a stable alignment in the desired through-plane (TP) direction. Here, we report an approach based on dual electrospun Nafion-PVDF nanofiber composites that yields a stable TP alignment. It utilizes extreme thinness and strong inherent orientation within electrospun nanofibers, which is readily converted to TP alignment by plunging an electrospun nanofiber mat into a thin slit, resulting in nanofiber buckling and subsequent consolidation. Using TEM and SAXS, we demonstrate a pronounced and sustained TP ion channel orientation in prepared membranes, yielding a highly anisotropic swelling and conductivity exceeding that of bulk Nafion when normalized to Nafion content. The analysis also highlights the importance of PVDF as a stabilizing component, preserving orientation upon annealing, while a similarly prepared pure Nafion membrane loses anisotropy. The approach holds potential to advance the FC technology by overcoming current limitations of ionomeric membranes.

2.
Chem Commun (Camb) ; 53(73): 10128-10131, 2017 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-28841217

RESUMO

We report on the use of charge-transfer complexes between amines and carbon tetrachloride, as a novel way to activate the amine for photochemical reactions. This principle is demonstrated in a mild, transition metal free, visible light assisted, dealkylative amide formation from feedstock carboxylic acids and amines. The low absorption coefficient of the complex allows deep light penetration and thus scale up to a gram scale.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...